Diario de Raúl García
lunes, 8 de junio de 2020
miércoles, 13 de mayo de 2020
EJERCICIO 8
Truncar un cuerpo geométrico significa que con un corte paralelo a la base le quitas una parte para dejar una parte lisa como si fuera una base y algunos de los ejemplos son:
Si se trunca un cuerpo el cual es convexo de una forma casi segura sacara dos figuras truncadas las cuales las dos van a ser figuras convexas.
- un triangulo isósceles truncando la punta:
- un prisma de base de trapecio isósceles:
- un cono con la punta truncada:
- un cubo con las esquinas truncadas:
Si se trunca un cuerpo el cual es convexo de una forma casi segura sacara dos figuras truncadas las cuales las dos van a ser figuras convexas.
EJERCICIO 7
Los poliedros convexos son aquellos que sus ángulos internos miden menos de 180º y a los cuales las diagonales que se puedan realizar en dicho poliedro son todas internas y no hay ningún tipo de posibilidad de que se traze por fuera.
Esto lo que nos dice es que algunos de los cuerpos de revolución nos pueden dar algunos poliedros convexos?
La respuesta a esta pregunta es que si ya que al ser cuerpos de revolución y girar sobre un eje y puede haber dos opciones o que ese cuerpo de revolución sea redondo o casi sin ángulos o que todos sus ángulos sean internos sin posibilidad de que se realicen diagonales en el exterior del cuerpo.
EJERCICIO 4
Este poliedro regular esta compuesto por dos tipos uno es un triangulo equilátero de 4 caras y una base cuadrada y otro es un cubo de 6 caras iguales.
Esta figura es un poliedro regular completo debido a que al estar compuesto por dos figuras regulares es una figura regular pero si una de las figuras no fuera regular entonces si seria una figura semiregular.
Esta figura es un poliedro regular completo debido a que al estar compuesto por dos figuras regulares es una figura regular pero si una de las figuras no fuera regular entonces si seria una figura semiregular.
EJERCICIO 6
- Para que podamos ver un cilindro girándolo sobre una imagen tenemos que girara sobre uno de sus lados mayores a un rectángulo para ver un cilindro.
- Para que podamos ver a un cono tenemos que girar sobre un eje que es el eje de la altura a un triangulo rectángulo y de esta forma sacamos un cono.
- para que podamos ver una esfera tenemos que hacer girar sobre el único eje recto que tiene a una semiesfera y con eso nos saldría una esfera.
EJERCICIO 5
Hay 5 tipos de poliedros regulares los cuales se llaman así debido a que sus caras son regulares y todos sus diedros y ángulos poliedros también son iguales ya que un poliedro es regular siempre y cuando todas sus caras sean iguales y si todos sus vértices concurren al mismo numero de caras.
Estos son los poliedros regulares:
Estos son los poliedros regulares:
- tetraedro:
- octaedro:
- cubo:
- dodecaedro:
- icosaedro:
Suscribirse a:
Entradas (Atom)